ENGINEERING PHYSICS

I B. Tech: ECE, EEE, CSIT, IT, AERO, MECH

Course Code:	Category	Hours / Week			Credits	Maximum Marks		
A5BS09	BSC	L	T	P	C	CIA	SEE	Total
		3	1	0	4	30	70	100
Contact Classes: 44	Tutorial Classes: 08	Practical Classes:0				Total Classes: 52		

Course Objectives:

The course should enable the students to:

- 1. Describe the chemical reaction and phase transformation in materials by using modern thermodynamic models
- 2. Learn the fundamentals of transport properties of materials
- 3.Describe the interactions of light with materials which results in colour and the temperature dependence of magnetic susceptibility
- 4. Learn the basic principles of optical fiber and its communication system
- 5. Understand the development of Nano technology and synthesis of Nano materials by using different techniques

Course Outcomes:

The student will able to:

- 1. **Analyze** the bonding scheme and its physical properties of a given material
- 2. Evaluate the dimensionality, rates of a nucleation and growth process from kinetic data
- 3. **Evaluate** the curie and Neel temperature of a given substance.
- 4. **Justify** how the graded index optical fibre is more efficient than step index optical fiber in fiber optic communication system
- 5. **Recommend** appropriate synthesis method and explain the characterization techniques

UNIT-I The Structure of Materials&Thermodynamics of Condensed Phases Classes: 09

The Structure of Materials: Structure of Metals and Alloys-- Space lattice, unit cell, basis, crystal systems, Bravais lattice, S.C, B.C.C & F.C.C Structures. Structure of Ceramics and Glasses – Rock salt structure, Diamond structure, structure of SiO₄.

Thermodynamics of Condensed Phases: Introduction – Thermodynamics of Metals and Alloys, - Gibbs rule, Cu- Ni phase diagram, Eutectic systems, Iron-Iron carbide (Fe-Fe₃C) equilibrium diagram.

Transport Properties of Materials: Introduction -Momentum Transport properties of Materials, -The Molecular Origins of Viscosity, Temperature Dependence of Pure MetalViscosity, Composition Dependence of alloy Viscosity.

Band theory of solids: Free electron theory, Origin of energy band formation in solids, Estimation of Fermi-level, Kronig-Penny model, E-K diagram.

Electrical and Optical properties -Conduction, Semi conductivity, Electrical Conduction in Ionic Ceramics. Reflection, Refraction, Absorption and transmission. Opacity and Translucency in insulators. Light interaction with solids, EMR, atomic and electronic interaction.

Magnetic properties – Introduction, Types of magnetic materials, influence of temperature on magnetic behavior, Hysteresis curve, Soft and Hard magnetic materials, Magnetic storage, Ferrite applications.

UNIT-IV

Optoelectronic devices and optical fibers

Classes: 09

Optoelectronic devices: Introduction to Semiconductors, PN Junction Diode, V-I characteristics and applications. LED - Construction, working and applications. Solar cells- working and its applications. Efficiency issues of Solar cell, PIN diode characteristics.

Fiber Optics: Structure of fibers, Principle of fiber (TIR), Acceptance angle and NA. Types of fibers- SI and GI fibers- R.I profiles. Single and Multimode fibers-SMSI, MMSI, MMGI. OFC System with block diagram. Fiber optic sensors – Basic principle, working of Pressure and Temperature Sensors. Applications of fibers in different fields.

UNIT-V

Introduction to Engineered materials

Classes: 08

Synthesis of Nano materials: Introduction to nano particles, nano scale, Surface to volume ratio and quantum confinement. Techniques for synthesis of nano materials-Top Down and Bottom Up methods—Sol gel, CVD methods and Photolithography.

Characterization of Nanomaterials: Imaging methods – SEM, TEM and STM. Applications of Nano materials in engineering and Biomedical fields and other fields.

Text Books:

- 1. Engineering Physics, B.K. Pandey, S. Chaturvedi Cengage Learing
- 2. Haliday and Resnick, Physics wiley
- 3. P.K Palanisamy, Engineering Physics, Sitech Publications, 2013, IVthEdn.
- 4. Essentials of Nano Tecnology by Jeremy Ramsden.
- 5. An introduction to materials engineering and science by Brian S. Mitchell

Reference Books:

- 1. Hecht, "Optics", Pearson Education, 2008.
- 2. D. A. Neamen, "Semiconductor Physics and Devices", Times Mirror High EducationGroup, Chicago, 1997.
- 3. Fundamentals of material science and engineering by William D. Callister, Jr. David G. Rethwisch

Web references:

- 1. https://www.edx.org/course?search_query=semiconductor+physics
- 2. https://www.edx.org/course/nanotechnology-fundamentals-purduex-nano530x
- 3. https://www.edx.org/course/physics-electronic-polymers-pep-purduex-nano600

E -Text Books:

- 1. http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2010_Fall/classnotes/NanoB_week14.pdf
- 2. https://www.scribd.com/document/70908178/Semiconductor-Devices-Basic-Principles-Jasprit-Singh
- 3. https://www.scribd.com/doc/105174065/Fundamentals-of-Photonics
- 4. ftp://nozdr.ru/biblio/kolxo3/P/PE/PEo/Thyagarajan%20K.,%20Ghatak%20A.%20Lasers..%20Fund amentals%20and%20Applications%20(2ed.,%20GTP,%20Springer,%202010)(ISBN%2014419644 1X)(O)(674s)_PEo_.pdf
- 5. https://subodhtripathi.files.wordpress.com/2012/01/optical-fiber-communications-by-gerd-keiser 2.pdf
- 6. http://www.hailienene.com/resources/nano-technology.pdf

MOOCs Courses:

- 1. http://nptel.ac.in/courses/118104008/1 (Fundamentals of Nano technology)
- 2. http://nptel.ac.in/courses/118104008/13 (Nano structures, synthesis and characterization)
- 3. https://nptel.ac.in/courses/113/104/113104096/(mateiral science)
- 4. https://nptel.ac.in/courses/113/102/113102080/(Metallurgy and material science)